8y^2+12*(2^.5)y=306

Simple and best practice solution for 8y^2+12*(2^.5)y=306 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 8y^2+12*(2^.5)y=306 equation:



8y^2+12(2^.5)y=306
We move all terms to the left:
8y^2+12(2^.5)y-(306)=0
We multiply parentheses
8y^2+24y^2-306=0
We add all the numbers together, and all the variables
32y^2-306=0
a = 32; b = 0; c = -306;
Δ = b2-4ac
Δ = 02-4·32·(-306)
Δ = 39168
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{39168}=\sqrt{2304*17}=\sqrt{2304}*\sqrt{17}=48\sqrt{17}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-48\sqrt{17}}{2*32}=\frac{0-48\sqrt{17}}{64} =-\frac{48\sqrt{17}}{64} =-\frac{3\sqrt{17}}{4} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+48\sqrt{17}}{2*32}=\frac{0+48\sqrt{17}}{64} =\frac{48\sqrt{17}}{64} =\frac{3\sqrt{17}}{4} $

See similar equations:

| -3x-48=4(2x-1) | | 3x-2=2(3x-4) | | 8y^2+12(2^.5)y=306 | | 7+49x*2=0 | | 7+4z=19 | | +5y+2y+9+y=-25 | | 8.5p+5.4=3p-4.5 | | 7m+3=10m+3 | | 2.4a-7.4=2.6a-8.1 | | 7m+3=10m+3= | | 13x-3+3x+2=125 | | 13x-3+55=180 | | y=-5y+48 | | 13x-3+55=125 | | 3x+2+55=125 | | 2x+5/4=3 | | 0.06x+0.07(x+300)=73 | | 5x-7+89=91 | | 0.08a+0.10(a+3,000)=1,740 | | 6.82x2+13.64x=-91.67 | | 0.2y+0.7(12-y)=5.4 | | 0.05t+0.11(100-t)=7.4 | | 3x+2(4-x)=-3 | | 0.05+0.11(100-t)=7.4 | | 5x-4=-8x+11 | | 14x+1+5x-7=91 | | -0.5(2t+5)=0.5(-2-t) | | 0.1y+0.6(15-y)=6.5 | | x^2+30-1000=0 | | 3y*y=200 | | N+600=n*4 | | 10x-10+30=150 |

Equations solver categories